Math 756 • Midterm Exam • Victor Matveev
 October 21, 2013

1) (20pts) Show that the image of the unit disk under the transformation $z=\frac{2 \zeta}{\zeta-1}$ is a halfplane. Next, make a rough guess about the image of a square inscribed into the unit circle, with vertices at ± 1 and $\pm i$, using only the information about the mapping of the vertices of this square. Sketch your guess. Keep in mind that this map is conformal.
2) (20pts) We learned that $\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ can be calculated by contour integration of an analytic function $f(z)=\pi \cot \pi z / z^{k}$ over a rectangular contour with vertices at $\pm(N+1 / 2) \pm i N$, in the limit $N \rightarrow \infty$. Use a similar method to calculate $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ (hint: change the integrand slightly). Make sure to comment on the boundedness of each piece of the resulting contour integral.
3) (30pts) Solve the following Volterra integral equation. You may use without derivation the Laplace transform result $L[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}$; denote $\gamma=\omega(\omega-1)$ to simplify algebra. Does solution exist when $\omega=+1$?

$$
y(t)=t+\int_{0}^{t} y(t-\tau) \sin \omega \tau d \tau
$$

4) (30pts) Use the Fourier transform to write down the solution for the following modification of the heat (or diffusion) equation, as a convolution of the boundary condition with the Green's function of this problem. Make a rough sketch of the Green's function $g(x, t)$ for any two different values of time, t_{1} and $t_{2}>t_{1}$. Comment on the physical meaning of parameter ω.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\omega \frac{\partial u}{\partial x} ; \quad-\infty<x<+\infty, \quad t>0, \omega>0 \\
u(x, t=0)=f(x)
\end{array}\right.
$$

